Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies*

A. Friedman^{1,5}, J. J. Barnard^{1,5}, R. J. Briggs^{2,5}, R. C. Davidson^{3,5}, M. Dorf^{3,5}, A. Faltens^{2,5}, D. P. Grote^{1,5}, E. Henestroza^{2,5}, E. P. Lee^{2,5}, M. Leitner^{2,5}, B. G. Logan^{2,5}, A. B. Sefkow^{3,5}, W. M. Sharp^{1,5}, W. L. Waldron^{2,5}, D. R. Welch⁴, and S. S. Yu^{2,5}

¹Lawrence Livermore National Laboratory, Livermore, California, USA

²Lawrence Berkeley National Laboratory, Berkeley, California, USA

³Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA

⁴Voss Scientific, Albuquerque, New Mexico, USA

⁵Heavy Ion Fusion Science Virtual National Laboratory

17th International Symposium on Heavy-Ion Inertial Fusion (HIF2008) 3-8 August 2008, Tokyo Institute of Technology, Tokyo, Japan

^{*}This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344; by LBNL under Contract DE-AC02-05CH11231; and by PPPL under Contract DE-AC02-76CH03073.

Outline

- Goals and approach
- Design as developed using 1-D code
- Studies using Warp and LSP codes
- Brief comment on PLIA (Pulse Line Ion Accelerator)
- What remains to be done

Goals and approach

LITHIUM ION BEAM BUNCH

Final Beam Energy: **3-5 MeV**

Final Spot Size : ~ 1 mm diameter

Total Charge Delivered: **30 nC** ($\sim 2x10^{11}$ particles or $I_{max} \sim 30$ A)

Exiting beam available for dE/dx measurement

NDCX-II represents a significant upgrade over NDCX-I

	Ion (atomic	Linac	Ion	Beam	Target	Range	Energy
	number / mass of	voltage	energy	energy	pulse	-microns	density
	common isotope)	- MV	- MeV	- J	- ns	(in)	10^{11}J/m^3
NDCX-I	$K^{+}(19/39)$	0.35	0.35	0.001-	2-3	0.3/1.5	0.04
				0.003		(in solid/	to
						20% Al)	0.06
NDCX-II	Li ⁺¹ (3 / 7)	3.5 -	3.5 -	0.1 -	1-2	7 - 4	0.25
	or	5	15	0.28	(or 5 w	(in solid	to
	$Na^{+3} (11 / 23)$				hydro)	Al)	1

- For initial WDM experiments: baseline is a 1-ns Li⁺ pulse.
- For experiments relevant to ion direct drive: require a longer pulse with a "ramped" kinetic energy, or a double pulse.
 - Glen Westenskow explored one approach to the latter.
- Possibility: Na⁺³ at 15 MeV has a shorter range than Li⁺ at 5 MeV, due to the Z² scaling of ion deposition (per TRIM code).
 - It would require stripping on a dense plasma jet, introducing scattering; but Na may offer a higher source current density than Li.

Induction cells for NDCX-II are available from LLNL's decommissioned ATA facility

Test stand has begun to verify performance

wa co

solenoid

water cooling

Cells will be refurbished with stronger, pulsed solenoids

The HIFS-VNL has sufficient ATA parts to build NDCX-II, enabling beam-target experiments at the Bragg peak & studies of ion direct-drive for IFE

This simple circuit can generate a wide variety of shapes; other equally simple circuits offer additional waveforms

(C3 can be increased, R3 or L2 decreased, by inserting additional components across the cell)

induction cell & accelerating gap impedance

Waveforms generated for various component values (Blumlein source):

The Heavy Ion Fusion Science Virtual National Laboratory

NDCX-II uses an accel-decel injector in which the "einzel lens" effect provides transverse confinement

NDCX-II must make effective use of assets (accelerating cells and Blumleins) from decommissioned ATA accelerator

Issues:

- ATA cells come with constraints:
 - 1.4 x 10⁻³ Volt-seconds in each ferromagnetic core
 - ATA Blumleins offer 200-250 kV, but only if pulse is < 70 ns
 - At front end where longer pulses are needed, use custom voltage sources;
 limit to ~ 100 kV for cost
- A gap must be "on" while any of the beam overlaps its extended fringe field.
 To shorten that field, the 6.7-cm radius of the ATA beam pipe is reduced to 4.0 cm
- Some pulses must be "shaped" to combat space charge forces
- So, need at least ~30 cells (20 w/ Blumleins + 10 w/ lower-voltage sources)

Nice developments:

- At least 40 ATA cells are available
- The 200-kV pulses can be shaped via inexpensive passive circuits
- At higher energies, concept uses modular 5-cell "blocks"
- Induction accelerator can impart all or most of final ~8% velocity "tilt"

We are well on our way toward a physics design for NDCX-II

- Accel-decel injector produces ~ 100 keV Li⁺ beam with ~ 67 mA flat-top
- Induction accelerates it to 3.5 MeV at 2 A
- The design is necessarily aggressive; 500 ns beam must be compressed to \sim 1 ns

- After neutralized drift compression, about 75% of the 30 nC beam charge passes through the focal plane in a 1-ns window, with a minimal pre-pulse.
- The current of the compressed beam (averaged over 1 ns) is 23 A, with a peak (averaged over 0.1-ns) of 32 A and an FWHM of 1 ns.
- However, we're just beginning to develop the transverse dynamics & final focusing

Physics design effort relies on PIC codes

- 1-D PIC code that follows (z,v_z)
 - Poisson equation with transverse falloff ("HINJ model") for space charge

$$g_0 = 2 log (r_{pipe} / r_{beam0})$$
 $k_{\perp}^2 = 4 / (g_0 r_{beam0}^2)$

- A few hundred particles
- Models gaps as extended fringing field (Ed Lee's expression)
- Flat-top initial beam with parabolic ends, with parameters from a Warp run
- "Realistic" waveforms: flat-top, "triangles" from circuit equation, and low-voltage shaped "ears" at front end
- Interactive (Python language)
- Warp
 - 3-D and axisymmetric (r,z) models; (r,z) used so far
 - Electrostatic space charge and accelerating gap fields
 - Time-dependent space-charge-limited emission
- LSP
 - 3-D and axisymmetric (r,z) models; latter used to date
 - Fully EM or Ohm's Law fields

Principle 1: Shorten Beam First ("non-neutral drift compression")

- Compress longitudinally before main acceleration
- Want < 70 ns transit time through gap (with fringe field) as soon as possible
 ==> can then use 200-kV pulses from ATA blumleins
- Compress carefully to minimize effects of space charge
 - Avoid space-charge forces on main flat-top of pulse at early times
 - Constant line charge ==> ear fields required only at beam ends
- Want linear velocity tilt $v_z(z) = \alpha z + \beta$
 - Ideally, uniform spacing of "beads on the string" to avoid deformation of flat-top
 - At least two gaps are required to apply such a tilt
 - For zero-length gaps, two gaps can do it exactly
 - For fringing gaps, no exact solution is possible; a least-squares optimization is used, penalizing both nonlinearlity and nonuniformity

Principle 2: Let It Bounce

- Rapid inward motion in beam frame is required to get below 70 ns
- Space charge ultimately inhibits this compression
- Beam is (ideally) nearly parabolic by this time
- However, this short a beam is not sustainable
 - Ears to confine it, much less apply a tilt, can't readily be made, especially with fringing gap fields
 - So, the beam "bounces" and starts to lengthen
- Fortunately, a longer beam still takes < 70 ns because it is now moving faster
- Allow it to lengthen while applying:
 - additional acceleration via flat pulses
 - confinement via ramped ("triangular") pulses
- Then use final gaps to apply the "exit tilt" needed for Neutralized Drift Compression

Design as developed using 1-D code

Voltage waveforms for all gaps

Pulse length (m) vs. z of center-of-mass

Pulse duration vs. z

gvd

gvr

gtdur

A series of snapshots shows how the (E_k,z) phase space and the line charge density evolve

These snapshots show how the (v_z,z) phase space and the line charge density evolve (note the auto-scaling)

Figure-of-merit for longitudinal focus is motivated by target requirements for WDM studies

Focal plane is defined as: plane through which the greatest average beam current passes in a 1.0 ns window

Current (A) in optimal 1.0-ns window

Inputs to focus calc:

Bin duration 0.1 ns
Window duration 1.0 ns
Separation of trial planes 0.10 m
Results of focus calc:

FWHM at focal plane 0.99 ns

RMS-estimated focal plane 14.2 m
'Best' focal plane 13.8 m
Average current in 1-ns window 22.7 A
Charge in window 22.7 nC
Percent of total charge in window 75.7 %
Average power in 1-ns window 79.8 MW
Energy in 1-ns window 79.8 mJ
Peak current at focal plane 32.4 A
Peak power at focal plane 113. 8 MW

Longitudinal focus has a shallow optimum for this beam

Studies using Warp and LSP codes

(see Bill Sharp poster)

Warp is used to simulate the accel-decel injection process

- Nominal run uses a source diameter of 2.9 cm and yields a flat-top current of 67 mA, giving 10.1 mA/cm².
- Could use a 1.4" (3.56 cm) source for 100 mA; would need to confirm that transverse confinement is adequate for "fatter" beam in "thinner" pipe.
- The flat-top energy at the first gap is 102 kV.
- The current rise time is ~ 40 ns; the emitter voltage rise time is ~ 110 ns.

Warp simulations show reasonably smooth transverse dynamics

The normalized transverse emittance in this run grew in the accelerator from 0.9 to 1.2 mm-mr

1-D code (top) & Warp (bottom) results agree, with differences

Simulations of NDCX-II neutralized compression and focus suggest that a plasma of density ~ 10¹⁴ cm⁻³ is desirable

- Idealized beam, uniform plasma, so far:
 - Li+, 2.8 MeV, 1.67 eV temperature
 - 2-cm -5 or -6.7 mrad convergence
 - uniform current density; ε = 24 mm-mrad
 - 0.7-A with parabolic 50-ns profile
 - applying ideal tilt for 30 ns of beam
- ½ mm 1-ns beam has 2x10¹³ cm⁻³ density

(LSP runs by D. Welch; others by A. Sefkow, M. Dorf; Warp code starting to be used)

We simulate injection from Cathodic-Arc Plasma sources

- This run corresponds to an NDCX-I configuration with 4 sources
- It was made by Dave Grote using Warp in 3-D mode
- LSP has been used extensively for such studies

Brief comment on PLIA

(see Chi Yeung Ling poster)

Pulse-Line Ion Accelerator (PLIA) may serve as a compact "afterburner" or an alternative front end

A traveling wave on a helical pulse line accelerates the ion bunch

- -"surfing" mode: acceleration of short bunch;
- -"snowplow" mode: aceleration and bunching of long pulse

Proof-of-principle test on NDCX-I: acceleration & longitudinal bunching

Voltage gradient was limited to < 0.2 MV/m by partial discharges in the vacuum

Scaled helix for high gradient testing

- so far, peak gradient 0.35 MV/m
- partial discharges traced to high frequency ringing from spark gap pulser, now reduced; further reduction is being pursued

What remains to be done

Progress has been encouraging; much remains to be done

- Proper accounting for initial beam-end energy variation due to space charge (the 1-D run shown was initiated with a fully-formed uniform-energy beam)
 - Other 1-D runs used a "model" initial energy variation and an entry "ear" cell;
 they produced compressed beams similar to the one shown
 - However, that variation was not realistic; a Warp run using the 1-D-derived waveforms yielded inferior compression
- Better understanding of beam-end wrap-around (causes and consequences)
- A prescription for setting solenoid strengths to yield a well-matched beam
- Optimized final focusing, accounting for dependence of the focal spot upon velocity tilt, focusing angle, and chromatic aberration
- Assessment of time-dependent focusing to correct for chromatic effects
- Development of plasma injection & control for neutralized compression & focusing (schemes other than the existing FCAPS may prove superior)
- Establishment of tolerances for waveforms and alignment

Major goals remain:

- a self-consistent source-through-target design, including assessment of tolerances etc., for WDM studies
- a prescription for modifications offering multiple pulses, ramped energy, and/or greater total energy, for ion direct drive studies

DOE priorities include an ion-driven Warm Dense Matter facility

From An Interim Report on Facilities for the Future of Science (August 2007):

Integrated Beam-High Energy Density Physics Experiment (IB-HEDPX)

Update: Mission Need for the IB-HEDPX (formerly called the Integrated Beam Experiment, or IBX), an intermediate-scale experiment using heavy ion beams for research on Warm Dense Matter (a midway state between solid matter and plasmas), was approved by the Department in 2005. Small-scale experiments are planned in 2008-2009 as part of R&D to provide a scientific basis for the new facility.

An IB-HEDPX capability for integrated acceleration compression and focusing on high current, space-charge-dominated beams would be unique—not available in any existing accelerator in the world.

From DOE's mission need document: "NDCX-II ... is necessary R&D to assess the performance requirements of injection, acceleration and focusing of short pulses needed for the IB-HEDPX. Out of the \$6M R&D cost (for IB-HEDPX), \$5M is for hardware upgrade of NDCX-I to NDCX-II, which serves as a prototypical test-bed for the critical physics and engineering for developing the design and construction methodology of IB-HEDPX"

